Archives     Advertise     Editorial Calendar     Subscribe     Contact Us    


Vanderbilt Research Explores Repositioning Existing Drugs to Prevent Epidemics


 
Donald Rubin, MD

Emerging viral infections like Zika keep popping up around the world in such quick succession that medicine is having a hard time keeping up. It can take 15 years and more than $1 billion to bring a new drug to market.

One possible solution: Identify the anti-viral potential of drugs for other diseases that are already on the market, and "reposition" them to stop epidemics before they start.

That's the approach a research team at Vanderbilt University School of Medicine is advocating. In a report published in the journal PLOS Computational Biology, Donald Rubin, MD, Zhongming Zhao, PhD, and colleagues describe how they used computer-based screening methods to identify 110 potential anti-viral drug targets.

The researchers said the anti-viral potential of approved drugs must, of course, be confirmed through animal and clinical testing, but "the prospect of drug repositioning is emerging as a promising alternative to traditional drug design," especially in combating infectious diseases, the team concluded.

Rubin, professor of Medicine and of Pathology, Microbiology and Immunology at Vanderbilt, is co-senior author of the paper with Zhao, a former Vanderbilt faculty member now at the University of Texas Health Science Center in Houston.

Viruses must hijack factors in the cells they infect in order to make copies of themselves. They're wily opponents, capable of mutating rapidly to slip through the body's immune defenses ... but they could be thwarted if the host factors they depend upon are identified and blocked.

About a dozen years ago at Vanderbilt, Rubin and colleague H. Earle Ruley, PhD, developed a technique for identifying the viral "Achilles' heel." Called gene-trap insertional mutagenesis, it's a way to identify genes in host cells that are essential for viral replication. Bits of DNA are inserted randomly throughout the cell's genome. If insertion occurs in a normally hijacked gene, the virus can't use it anymore because it's mutated or "trapped." Infected cells normally are lysed or blown apart by mushroom clouds of replicating virus. But those with a trapped gene survive.

In this way, the researchers were able to identify approximately 700 host genes that play a role in the replication of 10 distinct mammalian viruses including rhinovirus, Herpes simplex, HIV, polio, and the West African hemorrhagic viruses Marburg and Ebola.

Using bioinformatics analysis, they looked for those with known "drug-gene signatures," gene-expression responses to drug exposures. The result: 110 host genes that encode proteins already targeted by FDA-approved or investigational drugs or pre-clinical agents. Seven of the drugs could potentially be repositioned to target host proteins hijacked by Ebola, including the anti-arrhythmic drug ajmaline, the diuretic clopamide and the anti-inflammatory piroxicam (Feldene).

 
Share:

Related Articles:


Recent Articles

Nashville's First Dedicated Clinic for Rape Exams Begins Taking Clients

Website includes interactive tool to help sexual assault victims determine if the SAFE Clinic is right for them

Read More

Practicing with Precision

Precision medicine holds great promise to tailor treatment in a manner that maximizes outcomes, yet a number of barriers exist that hinder the rapidly growing discipline's integration into daily practice.

Read More

Physician Spotlight: Brandon Downs, MD

Dr. Brandon Downs of Orthopaedic Specialists offers convenient, comprehensive services to patients who rely on his expertise in minimally invasive joint replacement and sports medicine.

Read More

Vanderbilt Bone & Joint Franklin Expands Staff, Adds Pediatric Services

Vanderbilt Bone & Joint Franklin greatly expands staff and adds pediatric services.

Read More

Regenerative Medicine in Orthopaedics

Regenerative medicine means less pain, more options for orthopaedic patients.

Read More

SJRI Opens Dickson Clinic

Southern Joint Replacement Institute opens Dickson clinic.

Read More

Health:Further Keynote Speakers Offer Energy And Insight

Although the annual Health:Further conference is best known for bringing innovative start-ups and investors together, the event also attracts healthcare and business organizations that have massive scale.

Read More

Industry Leaders Announce Innovative Orthopaedic Partnership

Saint Thomas Health, BlueCross BlueShield of Tennessee and Tennessee Orthopaedic Alliance recently announced a collaborative partnership for joint replacement.

Read More

Fighting the Good Fight

Franklin company mitigating cybersecurity risks for healthcare organizations nationwide.

Read More

Fighting the Good Fight

Franklin company mitigating cybersecurity risks for healthcare organizations nationwide.

Read More

Email Print
 
 

 

 


Tags:
None
Powered by Bondware
News Publishing Software

The browser you are using is outdated!

You may not be getting all you can out of your browsing experience
and may be open to security risks!

Consider upgrading to the latest version of your browser or choose on below: